BSI Standards Publication # Intelligent transport systems — Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) Part 7: Location referencing container (TPEG2-LRC) #### National foreword This Published Document is the UK implementation of ISO/TS 21219-7:2017. The UK participation in its preparation was entrusted to Technical Committee EPL/278, Intelligent transport systems. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. ISBN 978 0 580 95452 8 ICS 35.240.60; 03.220.01 Compliance with a British Standard cannot confer immunity from legal obligations. This This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 July 2017. #### Amendments/corrigenda issued since publication Date Text affected PD ISO/TS 21219-7:2017 # TECHNICAL SPECIFICATION ISO/TS 21219-7 First edition 2017-06 Intelligent transport systems — Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) — Part 7: Location referencing container (TPEG2-LRC) Systèmes intelligents de transport — Informations sur le trafic et le tourisme via le groupe expert du protocole de transport, génération 2 (TPEG2) — Partie 7: Conteneur de référencement d'emplacement (TPEG2-LRC) ## PD ISO/TS 21219-7:2017 **ISO/TS 21219-7:2017(E)** #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2017, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Contents | | | Page | |--------------|---|---|----------| | Forev | word | | iv | | Introduction | | | v | | 1 | Scope | е | 1 | | 2 | Normative references | | 1 | | 3 | Terms and definitions | | | | 4 | Abbreviated terms | | | | 5 | | kit specific constraints Relation to TPEG1-LRC Application identification | 4 | | 6 | LRC s | C structure | | | 7 | 7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10 | Message components LocationReferencingContainer Method DLR1LocationReferenceLink TMCLocationReferenceLink KoreanNodeLinkLocationReferenceLink VICSLinkReferenceLink ExtendedTMCLocationReferenceLink GeographicLocationReferenceLink UniversalLocationReferenceLink OpenLRLocationReferenceLink | 5
 | | Anne | x A (no | rmative) TPEG application, TPEG-Binary Representation | 8 | | | | rmative) TPEG application, TPEG-ML Representation | | | Bibliography | | | 12 | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 204, *Intelligent transport systems*. A list of all parts in the ISO 21219 series can be found on the ISO website. #### Introduction #### **History** TPEG technology was originally proposed by the European Broadcasting Union (EBU) Broadcast Management Committee, who established the B/TPEG project group in the autumn of 1997 with a brief to develop, as soon as possible, a new protocol for broadcasting traffic and travel-related information in the multimedia environment. TPEG technology, its applications and service features were designed to enable travel-related messages to be coded, decoded, filtered and understood by humans (visually and/or audibly in the user's language) and by agent systems. Originally, a byte-oriented data stream format, which may be carried on almost any digital bearer with an appropriate adaptation layer, was developed. Hierarchically structured TPEG messages from service providers to end-users were designed to transfer information from the service provider database to an end-user's equipment. One year later, in December 1998, the B/TPEG group produced its first EBU specifications. Two documents were released. Part 2 (TPEG-SSF, which became ISO/TS 18234-2) described the syntax, semantics and framing structure, which was used for all TPEG applications. Meanwhile, Part 4 (TPEG-RTM, which became ISO/TS 18234-4) described the first application for road traffic messages. Subsequently, in March 1999, CEN/TC 278, in conjunction with ISO/TC 204, established a group comprising members of the former EBU B/TPEG and this working group continued development work. Further parts were developed to make the initial set of four parts, enabling the implementation of a consistent service. Part 3 (TPEG-SNI, ISO/TS 18234-3) described the service and network information application used by all service implementations to ensure appropriate referencing from one service source to another. Part 1 (TPEG-INV, ISO/TS 18234-1) completed the series by describing the other parts and their relationship; it also contained the application IDs used within the other parts. Additionally, Part 5, the public transport information application (TPEG-PTI, ISO/TS 18234-5), was developed. The so-called TPEG-LOC location referencing method, which enabled both map-based TPEG-decoders and non-map-based ones to deliver either map-based location referencing or human readable text information, was issued as ISO/TS 18234-6 to be used in association with the other applications parts of the ISO/TS 18234 series to provide location referencing. The ISO/TS 18234 series has become known as TPEG Generation 1. #### **TPEG Generation 2** When the Traveller Information Services Association (TISA), derived from former forums, was inaugurated in December 2007, TPEG development was taken over by TISA and continued in the TPEG applications working group. It was about this time that the (then) new Unified Modelling Language (UML) was seen as having major advantages for the development of new TPEG applications in communities who would not necessarily have binary physical format skills required to extend the original TPEG TS work. It was also realized that the XML format for TPEG described within the ISO/TS 24530 series (now superseded) had a greater significance than previously foreseen, especially in the content-generation segment, and that keeping two physical formats in synchronism, in different standards series, would be rather difficult. As a result, TISA set about the development of a new TPEG structure that would be UML based. This has subsequently become known as TPEG Generation 2. TPEG2 is embodied in the ISO/TS 21219 series and it comprises many parts that cover introduction, rules, toolkit and application components. TPEG2 is built around UML modelling and has a core of rules that contain the modelling strategy covered in ISO/TS 21219-2, ISO/TS 21219-3 and ISO/TS 21219-4 and the conversion to two current physical formats: binary and XML; others could be added in the future. TISA uses an automated tool to convert from the agreed UML model XMI file directly into an MS Word document file, to minimize drafting errors, that forms the annex for each physical format. ### PD ISO/TS 21219-7:2017 **ISO/TS 21219-7:2017(E)** TPEG2 has a three container conceptual structure: message management (ISO/TS 21219-6), application (several parts) and location referencing (ISO/TS 21219-7). This structure has flexible capability and can accommodate many differing use cases that have been proposed within the TTI sector and wider for hierarchical message content. TPEG2 also has many location referencing options as required by the service provider community, any of which may be delivered by vectoring data included in the location referencing container. The following classification provides a helpful grouping of the different TPEG2 parts according to their intended purpose. - Toolkit parts: TPEG2-INV (ISO/TS 21219-1), TPEG2-UML (ISO/TS 21219-2), TPEG2-UBCR (ISO/TS 21219-3), TPEG2-UXCR (ISO/TS 21219-4), TPEG2-SFW (ISO/TS 21219-5), TPEG2-MMC (ISO/TS 21219-6), TPEG2-LRC (ISO/TS 21219-7) and TPEG2-LTE (ISO/TS 21219-24). - Special applications: TPEG2-SNI (ISO/TS 21219-9) and TPEG2-CAI (ISO/TS 21219-10). - Location referencing: TPEG2-ULR (ISO/TS 21219-11 1), TPEG2-GLR (ISO/TS 21219-21 1) and TPEG2-OLR (ISO/TS 21219-22). - Applications: TPEG2-PKI (ISO/TS 21219-14), TPEG2-TEC (ISO/TS 21219-15), TPEG2-FPI (ISO/TS 21219-16), TPEG2-TFP (ISO/TS 21219-18), TPEG2-WEA (ISO/TS 21219-19), TPEG2-RMR (ISO/TS 21219-23) and TPEG2-EMI (ISO/TS 21219-25). TPEG2 has been developed to be broadly (but not totally) backward compatible with TPEG1 to assist in transitions from earlier implementations, while not hindering the TPEG2 innovative approach and being able to support many new features, such as dealing with applications having both long-term, unchanging content and highly dynamic content, such as parking information. This document is based on the TISA specification technical/editorial version reference: SP13005/2.1/001. - ¹⁾ Under development. # Intelligent transport systems — Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) — #### Part 7: #### **Location referencing container (TPEG2-LRC)** #### 1 Scope This document establishes the method of signalling the specific location referencing used by all TPEG2 applications that require detailed location information to be delivered to client devices such as TPEG2-TEC. The TPEG2-location referencing container (TPEG2-LRC) is described and shows how it is used to signal which specific location referencing method is in use for a particular TPEG message. It is able to handle location referencing methods that are external to the present ISO series and the internal location referencing methods defined as parts of this series. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 17572-2:2015, Intelligent transport systems (ITS) — Location referencing for geographic databases — Part 2: Pre-coded location references (pre-coded profile) ISO 17572-3, Intelligent transport systems (ITS) — Location referencing for geographic databases — Part 3: Dynamic location references (dynamic profile) ISO/TS 21219-3, Intelligent transport systems — Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) — Part 3: UML to binary conversion rules ISO/TS 21219-4, Intelligent transport systems — Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) — Part 4: UML to XML conversion rules ISO/TS 21219-21²⁾, Intelligent transport systems — Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) — Part 21: Geographic location referencing (TPEG2-GLR) ISO/TS 21219-22, Intelligent transport systems — Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) — Part 22: OpenLR $^{\text{m}}$ location referencing (TPEG2-OLR) #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp ²⁾ Under development.