PD ISO/TS 20328:2016 ### **BSI Standards Publication** Imaging materials — Lenticular lens sheet — Measurements and specifications of dimensions #### National foreword This Published Document is the UK implementation of ISO/TS 20328:2016. The UK participation in its preparation was entrusted to Technical Committee CPW/42, Photography. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 90982 5 ICS 37.040.10 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 April 2016. Amendments issued since publication Date Text affected ## TECHNICAL SPECIFICATION PD ISO/TS 20328:2016 ISO/TS 20328 First edition 2016-04-01 # Imaging materials — Lenticular lens sheet — Measurements and specifications of dimensions Matériaux pour l'image — Feuille lenticulaire — Mesurages et spécifications des dimensions PD ISO/TS 20328:2016 **ISO/TS 20328:2016(E)** #### COPYRIGHT PROTECTED DOCUMENT #### © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Contents | | | | | |--------------------------|----------------------|---|----|--| | Foreword
Introduction | | | iv | | | | | | v | | | 1 | Scop | De | 1 | | | 2 | Normative references | | 1 | | | 3 | Tern | Terms and definitions | | | | 4 | Measurement | | 3 | | | | 4.1 | General | | | | | | 4.1.1 Outline | 3 | | | | | 4.1.2 Standard ambient condition | | | | | 4.2 | Width of a lenticule | | | | | | 4.2.1 Measurement equipment | 4 | | | | | 4.2.2 Measurement procedures | | | | | | 4.2.3 Reporting of the precision | | | | | | 4.2.4 Lens frequency (lpi) | 5 | | | | | 4.2.5 Precision within lot and lot-to-lot | | | | | 4.3 | Thickness of lenticule lense sheet | | | | | | 4.3.1 Measurement equipment | | | | | | 4.3.2 Measurement procedures | | | | | | 4.3.3 Reporting and classification of thickness of lenticular lens sh | | | | | 4.4 | Temperature and humidity dependence | | | | | | 4.4.1 General | | | | | | 4.4.2 Measurement equipment and procedures | | | | | | 4.4.3 Measurement and calculation of temperature dependence | | | | | | 4.4.4 Measurement and calculation of humidity dependence | | | | | | 4.4.5 Classification of the temperature and humidity dependence | 8 | | | Ann | ex A (in | nformative) Explanation of lenticular lens print | 9 | | | Bibl | iograph | hy | 12 | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information. The committee responsible for this document is ISO/TC 42, *Photography*. #### Introduction Lenticular lens are an array of magnifying lenses, which can generate a desired visual perception, including 3D effect, animation and flips, when the underlying interlaced printed image is viewed from different angles. The most widespread use of this technology is in lenticular printing, for use in packages, display posters, promotional buttons, magnets, coasters, collectibles, signs, menu boards, postcards and business cards. It is reported that the market size of lenticular sheets is over 100 million m² and the market is growing. Moreover, the image qualities of lenticular printing have improved dramatically, and further improvement is expected in the future. While production of lenticular sheets with a lens frequency of 100 lines per inch (lpi) is routine, products with 200 lpi are also currently available. To produce the optimal perceptive experience, the right choice of lenticular sheet is crucial. Different use cases require different lens frequencies. For a 2D view application, a 200 lpi material can be optimal, and for multiview 3D effect viewed from one meter or further, a 12 lpi material can be optimal. On a separate note, lenticular sheets with higher lens frequency can be thinner; therefore, increasing its potential in high quality packaging and a variety of printings. The multi-step process of lenticular printing involves creation of a lenticular image from at least two existing images and its combination with a lenticular sheet. The combining process can either be a 1) direct printing of the images on the lenticular sheets or 2) pasting the lenticular sheet and printed images. This process can be used to create various frames of animation (motion perception), offsetting the various layers at different increments (3D perception) or simply to show a set of alternate images which appear to transform into each other. Major factors influencing the quality of a lenticular image is the precision in the dimensions of the lenticules in the lenticular sheet and the printed interlaced image and the precision in the positioning of the lens array and the interlaced images. Poor precision results in poor image quality and poor precision in the dimensions of lenticules in the lenticular lens sheet can result in low production yield, consequently resulting in higher costs. Therefore, the demand for improving the precision in the dimensions of the lenticules in a lenticular lens sheet has been high. The standardization of the measurements of the dimension of the lenticules in a lenticular lens sheet has been requested from the market. ## Imaging materials — Lenticular lens sheet — Measurements and specifications of dimensions #### 1 Scope This Technical Specification specifies the measurements and specifications of the dimensions of a lenticular lens sheet. It describes measurement methods and specifies the nominal sizes and target dimensions with tolerance. It also describes methods to test the stability of dimensions of the lenticular lens sheet. This Technical Specification is applicable to lenticular lens sheets used in lenticular prints, including those that give an image the illusion of depth or make images appear to change/move as the image is viewed from different angles. Both impact and non-impact printing can be used to generate the images. Examples of the former are off-set, gravure and flexography, while the examples of the latter are silver halide, inkjet, dye diffusion thermal transfer and electrophotography. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 11359-2, Plastics — Thermomechanical analysis (TMA) — Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### lenticular lens array of magnifying semi-cylindrical lenses, designed to produce a desired perception, such as 3D, motion or morphing, to the underlying interlaced image EXAMPLE This technique is widely used in lenticular printing, wherein the lenticular lens is used to provide an illusion of depth, change or motion to an underlying interlaced image when viewed from different angles. Note 1 to entry: Schematic diagrams of a lenticular sheet is shown in Figure 1 (top view) and Figure 2 (side view).