
PD ISO/IEC TS 17961:2013

Information technology —
Programming languages, their
environments and system
software interfaces — C secure
coding rules

PD ISO/IEC TS 17961:2013
Incorporating corrigendum August 2016

BSI Standards Publication

WB11885_BSI_StandardCovs_2013_AW.indd 1 15/05/2013 15:06

PD ISO/IEC TS 17961:2013

© ISO/IEC 2013

Information technology —
Programming languages, their
environments and system software
interfaces — C secure coding rules
Technologies de l’information — Langages de programmation, leur
environnement et interfaces des logiciels de systèmes — Règles de
programmation sécurisée en C

ISO/IEC
TS

17961
First edition
2013-11-15

Reference number
ISO/IEC TS 17961:2013(E)

TECHNICAL
SPECIFICATION

PD ISO/IEC TS 17961:2013 PUBLISHED DOCUMENT

National foreword

This Published Document is the UK implementation of
ISO/IEC TS 17961:2013, incorporating corrigendum August 2016.

The start and finish of text introduced or altered by corrigendum is
indicated in the text by tags. Text altered by ISO/IEC corrigendum
August 2016 is indicated in the text by .

The UK participation in its preparation was entrusted to Technical
Committee IST/5, Programming languages, their environments and
system software interfaces.

A list of organizations represented on this committee can be obtained
on request to its secretary.

This publication does not purport to include all the necessary provisions
of a contract. Users are responsible for its correct application.

© The British Standards Institution 2016.
Published by BSI Standards Limited 2016

ISBN 978 0 580 95600 3

ICS 35.060

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the Standards
Policy and Strategy Committee on 30 November 2013.

Amendments/corrigenda issued since publication

Date Text affected

30 September 2016 Implementation of ISO/IEC corrigendum August 2016

PD ISO/IEC TS 17961:2013

© ISO/IEC 2013

Information technology —
Programming languages, their
environments and system software
interfaces — C secure coding rules
Technologies de l’information — Langages de programmation, leur
environnement et interfaces des logiciels de systèmes — Règles de
programmation sécurisée en C

ISO/IEC
TS

17961
First edition
2013-11-15

Reference number
ISO/IEC TS 17961:2013(E)

TECHNICAL
SPECIFICATION

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

ii © ISO/IEC 2013 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2013
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

© ISO/IEC 2013 – All rights reserved iii

Contents Page

Foreword ..v
Introduction ..vi
1 Scope ... 1
2 Conformance ... 1

2.1 Portability assumptions .. 2
3 Normative references .. 2
4	 Terms	and	definitions ... 2
5 Rules .. 5

5.1 Accessing an object through a pointer to an incompatible type [ptrcomp] 5
5.2 Accessing freed memory [accfree] ... 6
5.3 Accessing shared objects in signal handlers [accsig] ... 7
5.4 No assignment in conditional expressions [boolasgn] ... 8
5.5 Calling functions in the C Standard Library other than abort, _Exit, and signal

from within a signal handler [asyncsig] .. 9
5.6 Calling functions with incorrect arguments [argcomp] ...11
5.7 Calling signal from interruptible signal handlers [sigcall] ..12
5.8 Calling system [syscall] ... 13
5.9 Comparison of padding data [padcomp] ... 14
5.10 Converting a pointer to integer or integer to pointer [intptrconv] ..14
5.11 Converting pointer values to more strictly aligned pointer types [alignconv]15
5.12 Copying a FILE object [filecpy] .. 16
5.13 Declaring the same function or object in incompatible ways [funcdecl]16
5.14 Dereferencing an out-of-domain pointer [nullref] ...18
5.15 Escaping of the address of an automatic object [addrescape] ..18
5.16 Conversion of signed characters to wider integer types before a check for

EOF [signconv] ... 19
5.17 Use of an implied default in a switch statement [swtchdflt] ...19
5.18 Failing to close files or free dynamic memory when they are no longer needed

[fileclose] ... 20
5.19 Failing to detect and handle standard library errors [liberr] ..20
5.20 Forming invalid pointers by library function [libptr] ...26
5.21 Allocating insufficient memory [insufmem]... 28
5.22 Forming or using out-of-bounds pointers or array subscripts [invptr] ...29
5.23 Freeing memory multiple times [dblfree] .. 34
5.24 Including tainted or out-of-domain input in a format string [usrfmt]...35
5.25 Incorrectly setting and using errno [inverrno] ..37
5.26 Integer division errors [diverr] ... 39
5.27 Interleaving stream inputs and outputs without a flush or positioning call [ioileave]40
5.28 Modifying string literals [strmod] ... 41
5.29 Modifying the string returned by getenv, localeconv, setlocale, and

strerror [libmod] .. 42
5.30 Overflowing signed integers [intoflow] .. 43
5.31 Passing a non-null-terminated character sequence to a library function that expects

a string [nonnullcs] .. 44
5.32 Passing arguments to character-handling functions that are not representable as

unsigned char [chrsgnext] ... 45
5.33 Passing pointers into the same object as arguments to different restrict-qualified

parameters [restrict] .. 46
5.34 Reallocating or freeing memory that was not dynamically allocated [xfree]47
5.35 Referencing uninitialized memory [uninitref] ...48
5.36 Subtracting or comparing two pointers that do not refer to the same array [ptrobj]49
5.37 Tainted strings are passed to a string copying function [taintstrcpy] ...50

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

ii © ISO/IEC 2013 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2013
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

© ISO/IEC 2013 – All rights reserved iii

Contents Page

Foreword ..v
Introduction ..vi
1 Scope ... 1
2 Conformance ... 1

2.1 Portability assumptions .. 2
3 Normative references .. 2
4	 Terms	and	definitions ... 2
5 Rules .. 5

5.1 Accessing an object through a pointer to an incompatible type [ptrcomp] 5
5.2 Accessing freed memory [accfree] ... 6
5.3 Accessing shared objects in signal handlers [accsig] ... 7
5.4 No assignment in conditional expressions [boolasgn] ... 8
5.5 Calling functions in the C Standard Library other than abort, _Exit, and signal

from within a signal handler [asyncsig] .. 9
5.6 Calling functions with incorrect arguments [argcomp] ...11
5.7 Calling signal from interruptible signal handlers [sigcall] ..12
5.8 Calling system [syscall] ... 13
5.9 Comparison of padding data [padcomp] ... 14
5.10 Converting a pointer to integer or integer to pointer [intptrconv] ..14
5.11 Converting pointer values to more strictly aligned pointer types [alignconv]15
5.12 Copying a FILE object [filecpy] .. 16
5.13 Declaring the same function or object in incompatible ways [funcdecl]16
5.14 Dereferencing an out-of-domain pointer [nullref] ...18
5.15 Escaping of the address of an automatic object [addrescape] ..18
5.16 Conversion of signed characters to wider integer types before a check for

EOF [signconv] ... 19
5.17 Use of an implied default in a switch statement [swtchdflt] ...19
5.18 Failing to close files or free dynamic memory when they are no longer needed

[fileclose] ... 20
5.19 Failing to detect and handle standard library errors [liberr] ..20
5.20 Forming invalid pointers by library function [libptr] ...26
5.21 Allocating insufficient memory [insufmem]...28
5.22 Forming or using out-of-bounds pointers or array subscripts [invptr] ...29
5.23 Freeing memory multiple times [dblfree] .. 34
5.24 Including tainted or out-of-domain input in a format string [usrfmt]...35
5.25 Incorrectly setting and using errno [inverrno] ..37
5.26 Integer division errors [diverr] ... 39
5.27 Interleaving stream inputs and outputs without a flush or positioning call [ioileave]40
5.28 Modifying string literals [strmod] ... 41
5.29 Modifying the string returned by getenv, localeconv, setlocale, and

strerror [libmod] .. 42
5.30 Overflowing signed integers [intoflow] .. 43
5.31 Passing a non-null-terminated character sequence to a library function that expects

a string [nonnullcs] .. 44
5.32 Passing arguments to character-handling functions that are not representable as

unsigned char [chrsgnext] ... 45
5.33 Passing pointers into the same object as arguments to different restrict-qualified

parameters [restrict] .. 46
5.34 Reallocating or freeing memory that was not dynamically allocated [xfree]47
5.35 Referencing uninitialized memory [uninitref] ...48
5.36 Subtracting or comparing two pointers that do not refer to the same array [ptrobj]49
5.37 Tainted strings are passed to a string copying function [taintstrcpy] ...50

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

iv © ISO/IEC 2013 – All rights reserved

5.38 Taking the size of a pointer to determine the size of the pointed-to type [sizeofptr]50
5.39 Using a tainted value as an argument to an unprototyped function

pointer [taintnoproto] ... 51
5.40 Using a tainted value to write to an object using a formatted input or output

function [taintformatio] ... 52
5.41 Using a value for fsetpos other than a value returned from fgetpos [xfilepos]52
5.42 Using an object overwritten by getenv, localeconv, setlocale, and

strerror [libuse] .. 53
5.43 Using character values that are indistinguishable from EOF [chreof] ..54
5.44 Using identifiers that are reserved for the implementation [resident] ..55
5.45 Using invalid format strings [invfmtstr] .. 57
5.46 Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted

sink [taintsink] ... 58
Annex A (informative) Intra- to Interprocedural Transformations ..59
Annex B (informative)	Undefined	Behavior ...63
Annex C (informative) Related Guidelines and References ...71
Annex D (informative) Decidability of Rules ...77
Bibliography ...78

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies
casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents,
the joint technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS),
which represents an agreement between the members of the joint technical committee and is accepted
for publication if it is approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a further
three years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirmed,
it is reviewed again after a further three years, at which time it must either be transformed into an
International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 17961 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

© ISO/IEC 2013 – All rights reserved v

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

iv © ISO/IEC 2013 – All rights reserved

5.38 Taking the size of a pointer to determine the size of the pointed-to type [sizeofptr]50
5.39 Using a tainted value as an argument to an unprototyped function

pointer [taintnoproto] ... 51
5.40 Using a tainted value to write to an object using a formatted input or output

function [taintformatio] ... 52
5.41 Using a value for fsetpos other than a value returned from fgetpos [xfilepos]52
5.42 Using an object overwritten by getenv, localeconv, setlocale, and

strerror [libuse] .. 53
5.43 Using character values that are indistinguishable from EOF [chreof] ..54
5.44 Using identifiers that are reserved for the implementation [resident] ..55
5.45 Using invalid format strings [invfmtstr] .. 57
5.46 Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted

sink [taintsink] ... 58
Annex A (informative) Intra- to Interprocedural Transformations ..59
Annex B (informative)	Undefined	Behavior ...63
Annex C (informative) Related Guidelines and References ...71
Annex D (informative) Decidability of Rules ...77
Bibliography ...78

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies
casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents,
the joint technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS),
which represents an agreement between the members of the joint technical committee and is accepted
for publication if it is approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a further
three years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirmed,
it is reviewed again after a further three years, at which time it must either be transformed into an
International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 17961 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

© ISO/IEC 2013 – All rights reserved v

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

Introduction

Background

An essential element of secure coding in the C programming language is a set of well-documented and
enforceable coding rules. The rules specified in this Technical Specification apply to analyzers, including
static analysis tools and C language compiler vendors that wish to diagnose insecure code beyond the
requirements of the language standard. All rules are meant to be enforceable by static analysis.

The application of static analysis to security has been done in an ad hoc manner by different vendors,
resulting in nonuniform coverage of significant security issues. This specification enumerates
secure coding rules and requires analysis engines to diagnose violations of these rules as a matter
of conformance to this specification. These rules may be extended in an implementation-dependent
manner, which provides a minimum coverage guarantee to customers of any and all conforming static
analysis implementations.

The largest underserved market in security is ordinary, non-security-critical code. The security-critical
nature of code depends on its purpose rather than its environment. The UNIX finger daemon (fingerd)
is an example of ordinary code, even though it may be deployed in a hostile environment. A user runs the
client program, finger, which sends a user name to fingerd over the network, which then sends a reply
indicating whether the user is logged in and a few other pieces of information. The function of fingerd
has nothing to do with security. However, in 1988, Robert Morris compromised fingerd by triggering a
buffer overflow, allowing him to execute arbitrary code on the target machine. The Morris worm could
have been prevented from using fingerd as an attack vector by preventing buffer overflows, regardless
of whether fingerd contained other types of bugs.

By contrast, the function of /bin/login is purely related to security. A bug of any kind in /bin/login
has the potential to allow access where it was not intended. This is security-critical code.

Similarly, in safety-critical code, such as software that runs an X-ray machine, any bug at all could
have serious consequences. In practice, then, security-critical and safety-critical code have the same
requirements.

There are already standards that address safety-critical code and therefore security-critical code. The
problem is that because they must focus on preventing essentially all bugs, they are required to be
so strict that most people outside the safety-critical community do not want to use them. This leaves
ordinary code like fingerd unprotected.

This Technical Specification has two major subdivisions:

— preliminary elements (Clauses 1–4) and

— secure coding rules (Clause 5).

Each secure coding rule in Clause 5 has a separate numbered subsection and a unique section identifier
enclosed in brackets (for example, [ptrcomp]). The unique section identifiers are mainly for use by
other documents in identifying the rules should the section numbers change because of the addition or
elimination of a rule. These identifiers may be used in diagnostics issued by conforming analyzers, but
analyzers are not required to do so.

Annexes provide additional information. Annex C (informative) Related Guidelines and References
identifies related guidelines and references per rule. A bibliography lists documents referred to during
the preparation of this Technical Specification.

The rules documented in this Technical Specification do not rely on source code annotations or assumptions
of programmer intent. However, a conforming implementation may take advantage of annotations to
inform the analyzer. The rules, as specified, are reasonably simple, although complications can exist
in identifying exceptions. An analyzer that conforms to this Technical Specification should be able to
analyze code without excessive false positives, even if the code was developed without the expectation
that it would be analyzed. Many analyzers provide methods that eliminate the need to research each

vi © ISO/IEC 2013 – All rights reserved

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

diagnostic on every invocation of the analyzer. The implementation of such a mechanism is encouraged
but not required. This Technical Specification assumes that an analyzer’s visibility extends beyond the
boundaries of the current function or translation unit being analyzed (see Annex A (informative) Intra-
to Interprocedural Transformations).

Completeness and soundness

The rules specified in this Technical Specification are designed to provide a check against a set of
programming flaws that are known from practical experience to have led to vulnerabilities. Although
rule checking can be performed manually, with increasing program complexity, it rapidly becomes
infeasible. For this reason, the use of static analysis tools is recommended.

It should be recognized that, in general, determining conformance to coding rules is computationally
undecidable. The precision of static analysis has practical limitations. For example, the halting
theorem of Computer Science states that there are programs whose exact control flow cannot be
determined statically. Consequently, any property dependent on control flow—such as halting—may
be indeterminate for some programs. A consequence of this undecidability is that it may be impossible
for any tool to determine statically whether a given rule is satisfied in specific circumstances. The
widespread presence of such code may also lead to unexpected results from an analysis tool. Annex D
(informative) Decidability of Rules provides information on the decidability of rules in this Technical
Specification.

However checking is performed, the analysis may generate

— false negatives: Failure to report a real flaw in the code is usually regarded as the most serious
analysis error, as it may leave the user with a false sense of security. Most tools err on the side of
caution and consequently generate false positives. However, there may be cases where it is deemed
better to report some high-risk flaws and miss others than to overwhelm the user with false positives.

— false positives: The tool reports a flaw when one does not exist. False positives may occur because
the code is sufficiently complex that the tool cannot perform a complete analysis. The use of features
such as function pointers and libraries may make false positives more likely.

To the greatest extent feasible, an analyzer should be both complete and sound with respect to
enforceable rules. An analyzer is considered sound with respect to a specific rule if it cannot give a
false-negative result, meaning it finds all violations of a rule within the entire program. An analyzer is
considered complete if it cannot issue false-positive results, or false alarms. The possibilities for a given
rule are outlined in Table 1.

Table 1 — Completeness and soundness

False positives

False
negatives

Y N

N Sound with
false positives

Complete and
sound

Y Unsound with
false positives

Complete and
unsound

The degree to which conforming analyzers minimize false-positive diagnostics is a quality of
implementation issue. In other words, quantitative thresholds for false positives and false negatives are
outside the scope of this Technical Specification.

Security focus

The purpose of this Technical Specification is to specify analyzable secure coding rules that can be
automatically enforced to detect security flaws in C-conforming applications. To be considered a security
flaw, a software bug must be triggerable by the actions of a malicious user or attacker. An attacker
may trigger a bug by providing malicious data or by providing inputs that execute a particular control

© ISO/IEC 2013 – All rights reserved vii

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

Introduction

Background

An essential element of secure coding in the C programming language is a set of well-documented and
enforceable coding rules. The rules specified in this Technical Specification apply to analyzers, including
static analysis tools and C language compiler vendors that wish to diagnose insecure code beyond the
requirements of the language standard. All rules are meant to be enforceable by static analysis.

The application of static analysis to security has been done in an ad hoc manner by different vendors,
resulting in nonuniform coverage of significant security issues. This specification enumerates
secure coding rules and requires analysis engines to diagnose violations of these rules as a matter
of conformance to this specification. These rules may be extended in an implementation-dependent
manner, which provides a minimum coverage guarantee to customers of any and all conforming static
analysis implementations.

The largest underserved market in security is ordinary, non-security-critical code. The security-critical
nature of code depends on its purpose rather than its environment. The UNIX finger daemon (fingerd)
is an example of ordinary code, even though it may be deployed in a hostile environment. A user runs the
client program, finger, which sends a user name to fingerd over the network, which then sends a reply
indicating whether the user is logged in and a few other pieces of information. The function of fingerd
has nothing to do with security. However, in 1988, Robert Morris compromised fingerd by triggering a
buffer overflow, allowing him to execute arbitrary code on the target machine. The Morris worm could
have been prevented from using fingerd as an attack vector by preventing buffer overflows, regardless
of whether fingerd contained other types of bugs.

By contrast, the function of /bin/login is purely related to security. A bug of any kind in /bin/login
has the potential to allow access where it was not intended. This is security-critical code.

Similarly, in safety-critical code, such as software that runs an X-ray machine, any bug at all could
have serious consequences. In practice, then, security-critical and safety-critical code have the same
requirements.

There are already standards that address safety-critical code and therefore security-critical code. The
problem is that because they must focus on preventing essentially all bugs, they are required to be
so strict that most people outside the safety-critical community do not want to use them. This leaves
ordinary code like fingerd unprotected.

This Technical Specification has two major subdivisions:

— preliminary elements (Clauses 1–4) and

— secure coding rules (Clause 5).

Each secure coding rule in Clause 5 has a separate numbered subsection and a unique section identifier
enclosed in brackets (for example, [ptrcomp]). The unique section identifiers are mainly for use by
other documents in identifying the rules should the section numbers change because of the addition or
elimination of a rule. These identifiers may be used in diagnostics issued by conforming analyzers, but
analyzers are not required to do so.

Annexes provide additional information. Annex C (informative) Related Guidelines and References
identifies related guidelines and references per rule. A bibliography lists documents referred to during
the preparation of this Technical Specification.

The rules documented in this Technical Specification do not rely on source code annotations or assumptions
of programmer intent. However, a conforming implementation may take advantage of annotations to
inform the analyzer. The rules, as specified, are reasonably simple, although complications can exist
in identifying exceptions. An analyzer that conforms to this Technical Specification should be able to
analyze code without excessive false positives, even if the code was developed without the expectation
that it would be analyzed. Many analyzers provide methods that eliminate the need to research each

vi © ISO/IEC 2013 – All rights reserved

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

diagnostic on every invocation of the analyzer. The implementation of such a mechanism is encouraged
but not required. This Technical Specification assumes that an analyzer’s visibility extends beyond the
boundaries of the current function or translation unit being analyzed (see Annex A (informative) Intra-
to Interprocedural Transformations).

Completeness and soundness

The rules specified in this Technical Specification are designed to provide a check against a set of
programming flaws that are known from practical experience to have led to vulnerabilities. Although
rule checking can be performed manually, with increasing program complexity, it rapidly becomes
infeasible. For this reason, the use of static analysis tools is recommended.

It should be recognized that, in general, determining conformance to coding rules is computationally
undecidable. The precision of static analysis has practical limitations. For example, the halting
theorem of Computer Science states that there are programs whose exact control flow cannot be
determined statically. Consequently, any property dependent on control flow—such as halting—may
be indeterminate for some programs. A consequence of this undecidability is that it may be impossible
for any tool to determine statically whether a given rule is satisfied in specific circumstances. The
widespread presence of such code may also lead to unexpected results from an analysis tool. Annex D
(informative) Decidability of Rules provides information on the decidability of rules in this Technical
Specification.

However checking is performed, the analysis may generate

— false negatives: Failure to report a real flaw in the code is usually regarded as the most serious
analysis error, as it may leave the user with a false sense of security. Most tools err on the side of
caution and consequently generate false positives. However, there may be cases where it is deemed
better to report some high-risk flaws and miss others than to overwhelm the user with false positives.

— false positives: The tool reports a flaw when one does not exist. False positives may occur because
the code is sufficiently complex that the tool cannot perform a complete analysis. The use of features
such as function pointers and libraries may make false positives more likely.

To the greatest extent feasible, an analyzer should be both complete and sound with respect to
enforceable rules. An analyzer is considered sound with respect to a specific rule if it cannot give a
false-negative result, meaning it finds all violations of a rule within the entire program. An analyzer is
considered complete if it cannot issue false-positive results, or false alarms. The possibilities for a given
rule are outlined in Table 1.

Table 1 — Completeness and soundness

False positives

False
negatives

Y N

N Sound with
false positives

Complete and
sound

Y Unsound with
false positives

Complete and
unsound

The degree to which conforming analyzers minimize false-positive diagnostics is a quality of
implementation issue. In other words, quantitative thresholds for false positives and false negatives are
outside the scope of this Technical Specification.

Security focus

The purpose of this Technical Specification is to specify analyzable secure coding rules that can be
automatically enforced to detect security flaws in C-conforming applications. To be considered a security
flaw, a software bug must be triggerable by the actions of a malicious user or attacker. An attacker
may trigger a bug by providing malicious data or by providing inputs that execute a particular control

© ISO/IEC 2013 – All rights reserved vii

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

path that in turn executes the security flaw. Implementers are encouraged to distinguish violations that
operate on untrusted data from those that do not.

Taint analysis

Taint and tainted sources

Certain operations and functions have a domain that is a subset of the type domain of their operands
or parameters. When the actual values are outside of the defined domain, the result might be either
undefined or at least unexpected. If the value of an operand or argument may be outside the domain
of an operation or function that consumes that value, and the value is derived from any external input
to the program (such as a command-line argument, data returned from a system call, or data in shared
memory), that value is tainted, and its origin is known as a tainted source. A tainted value is not necessarily
known to be out of the domain; rather, it is not known to be in the domain. Only values, and not the
operands or arguments, can be tainted; in some cases, the same operand or argument can hold tainted
or untainted values along different paths. In this regard, taint is an attribute of a value originating from
a tainted source.

Restricted sinks

Operands and arguments whose domain is a subset of the domain described by their types are called
restricted sinks. Any pointer arithmetic operation involving an integer operand is a restricted sink
for that operand. Certain parameters of certain library functions are restricted sinks because these
functions perform address arithmetic with these parameters, or control the allocation of a resource, or
pass these parameters on to another restricted sink. All string input parameters to library functions are
restricted sinks because it is possible to pass in a character sequence that is not null terminated. The
exceptions are strncpy and strncpy_s, which explicitly allow the source character sequence not to
be null-terminated. For purposes of this Technical Specification, we regard char * as a reference to a
null-terminated array of characters.

Propagation

Taint is propagated through operations from operands to results unless the operation itself imposes
constraints on the value of its result that subsume the constraints imposed by restricted sinks. In
addition to operations that propagate the same sort of taint, there are operations that propagate taint
of one sort of an operand to taint of a different sort for their results, the most notable example of which
is strlen propagating the taint of its argument with respect to string length to the taint of its return
value with respect to range.

Although the exit condition of a loop is not normally itself considered to be a restricted sink, a loop
whose exit condition depends on a tainted value propagates taint to any numeric or pointer variables
that are increased or decreased by amounts proportional to the number of iterations of the loop.

Sanitization

To remove the taint from a value, it must be sanitized to ensure that it is in the defined domain of
any restricted sink into which it flows. Sanitization is performed by replacement or termination. In
replacement, out-of-domain values are replaced by in-domain values, and processing continues using
an in-domain value in place of the original. In termination, the program logic terminates the path of
execution when an out-of-domain value is detected, often simply by branching around whatever code
would have used the value.

In general, sanitization cannot be recognized exactly using static analysis. Analyzers that perform taint
analysis usually provide some extralinguistic mechanism to identify sanitizing functions that sanitize an
argument (passed by address) in place, return a sanitized version of an argument, or return a status code
indicating whether the argument is in the required domain. Because such extralinguistic mechanisms
are outside the scope of this specification, this Technical Specification uses a set of rudimentary
definitions of sanitization that is likely to recognize real sanitization but might cause nonsanitizing or
ineffectively sanitizing code to be misconstrued as sanitizing. The following definition of sanitization
presupposes that the analysis is in some way maintaining a set of constraints on each value encountered
as the simulated execution progresses: a given path through the code sanitizes a value with respect to a

viii © ISO/IEC 2013 – All rights reserved

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

given restricted sink if it restricts the range of that value to a subset of the defined domain of the restricted
sink type. For example, sanitization of signed integers with respect to an array index operation must
restrict the range of that integer value to numbers between zero and the size of the array minus one.

This description is suitable for numeric values, but sanitization of strings with respect to content is
more difficult to recognize in a general way.

Tainted source macros

The function-like macros GET_TAINTED_STRING and GET_TAINTED_INTEGER defined in this
section are used in the examples in this Technical Specification to represent one possible method to
obtain a tainted string and tainted integer.

#define GET_TAINTED_STRING(buf, buf_size) \
 do { \
 const char *taint = getenv(“TAINT”); \
 if (taint == 0) { \
 exit(1); \
 } \
 \
 size_t taint_size = strlen(taint) + 1; \
 if (taint_size > buf_size) { \
 exit(1); \
 } \
 \
 strncpy(buf, taint, taint_size); \
 } while (0)

#define GET_TAINTED_INTEGER(type, val) \
 do { \
 const char *taint = getenv(“TAINT”); \
 if (taint == 0) { \
 exit(1); \
 } \
 \
 errno = 0; \
 long tmp = strtol(taint, 0, 10); \
 if ((tmp == LONG_MIN || tmp == LONG_MAX) && \
 errno == ERANGE) \
 ; /* retain LONG_MIN or LONG_MAX */ \
 if ((type)-1 < 0) { \
 if (tmp < INT_MIN) \
 tmp = INT_MIN; \
 else if (tmp > INT_MAX) \
 tmp = INT_MAX; \
 } \
 val = tmp; \
 } while (0)

© ISO/IEC 2013 – All rights reserved ix

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

path that in turn executes the security flaw. Implementers are encouraged to distinguish violations that
operate on untrusted data from those that do not.

Taint analysis

Taint and tainted sources

Certain operations and functions have a domain that is a subset of the type domain of their operands
or parameters. When the actual values are outside of the defined domain, the result might be either
undefined or at least unexpected. If the value of an operand or argument may be outside the domain
of an operation or function that consumes that value, and the value is derived from any external input
to the program (such as a command-line argument, data returned from a system call, or data in shared
memory), that value is tainted, and its origin is known as a tainted source. A tainted value is not necessarily
known to be out of the domain; rather, it is not known to be in the domain. Only values, and not the
operands or arguments, can be tainted; in some cases, the same operand or argument can hold tainted
or untainted values along different paths. In this regard, taint is an attribute of a value originating from
a tainted source.

Restricted sinks

Operands and arguments whose domain is a subset of the domain described by their types are called
restricted sinks. Any pointer arithmetic operation involving an integer operand is a restricted sink
for that operand. Certain parameters of certain library functions are restricted sinks because these
functions perform address arithmetic with these parameters, or control the allocation of a resource, or
pass these parameters on to another restricted sink. All string input parameters to library functions are
restricted sinks because it is possible to pass in a character sequence that is not null terminated. The
exceptions are strncpy and strncpy_s, which explicitly allow the source character sequence not to
be null-terminated. For purposes of this Technical Specification, we regard char * as a reference to a
null-terminated array of characters.

Propagation

Taint is propagated through operations from operands to results unless the operation itself imposes
constraints on the value of its result that subsume the constraints imposed by restricted sinks. In
addition to operations that propagate the same sort of taint, there are operations that propagate taint
of one sort of an operand to taint of a different sort for their results, the most notable example of which
is strlen propagating the taint of its argument with respect to string length to the taint of its return
value with respect to range.

Although the exit condition of a loop is not normally itself considered to be a restricted sink, a loop
whose exit condition depends on a tainted value propagates taint to any numeric or pointer variables
that are increased or decreased by amounts proportional to the number of iterations of the loop.

Sanitization

To remove the taint from a value, it must be sanitized to ensure that it is in the defined domain of
any restricted sink into which it flows. Sanitization is performed by replacement or termination. In
replacement, out-of-domain values are replaced by in-domain values, and processing continues using
an in-domain value in place of the original. In termination, the program logic terminates the path of
execution when an out-of-domain value is detected, often simply by branching around whatever code
would have used the value.

In general, sanitization cannot be recognized exactly using static analysis. Analyzers that perform taint
analysis usually provide some extralinguistic mechanism to identify sanitizing functions that sanitize an
argument (passed by address) in place, return a sanitized version of an argument, or return a status code
indicating whether the argument is in the required domain. Because such extralinguistic mechanisms
are outside the scope of this specification, this Technical Specification uses a set of rudimentary
definitions of sanitization that is likely to recognize real sanitization but might cause nonsanitizing or
ineffectively sanitizing code to be misconstrued as sanitizing. The following definition of sanitization
presupposes that the analysis is in some way maintaining a set of constraints on each value encountered
as the simulated execution progresses: a given path through the code sanitizes a value with respect to a

viii © ISO/IEC 2013 – All rights reserved

PD ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013(E)

given restricted sink if it restricts the range of that value to a subset of the defined domain of the restricted
sink type. For example, sanitization of signed integers with respect to an array index operation must
restrict the range of that integer value to numbers between zero and the size of the array minus one.

This description is suitable for numeric values, but sanitization of strings with respect to content is
more difficult to recognize in a general way.

Tainted source macros

The function-like macros GET_TAINTED_STRING and GET_TAINTED_INTEGER defined in this
section are used in the examples in this Technical Specification to represent one possible method to
obtain a tainted string and tainted integer.

#define GET_TAINTED_STRING(buf, buf_size) \
 do { \
 const char *taint = getenv(“TAINT”); \
 if (taint == 0) { \
 exit(1); \
 } \
 \
 size_t taint_size = strlen(taint) + 1; \
 if (taint_size > buf_size) { \
 exit(1); \
 } \
 \
 strncpy(buf, taint, taint_size); \
 } while (0)

#define GET_TAINTED_INTEGER(type, val) \
 do { \
 const char *taint = getenv(“TAINT”); \
 if (taint == 0) { \
 exit(1); \
 } \
 \
 errno = 0; \
 long tmp = strtol(taint, 0, 10); \
 if ((tmp == LONG_MIN || tmp == LONG_MAX) && \
 errno == ERANGE) \
 ; /* retain LONG_MIN or LONG_MAX */ \
 if ((type)-1 < 0) { \
 if (tmp < INT_MIN) \
 tmp = INT_MIN; \
 else if (tmp > INT_MAX) \
 tmp = INT_MAX; \
 } \
 val = tmp; \
 } while (0)

© ISO/IEC 2013 – All rights reserved ix

PD ISO/IEC TS 17961:2013 PD ISO/IEC TS 17961:2013

Information technology — Programming languages,
their environments and system software interfaces — C
secure coding rules

1 Scope

This Technical Specification specifies

— rules for secure coding in the C programming language and

— code examples.

This Technical Specification does not specify

— the mechanism by which these rules are enforced or

— any particular coding style to be enforced. (It has been impossible to develop a consensus on
appropriate style guidelines. Programmers should define style guidelines and apply these guidelines
consistently. The easiest way to consistently apply a coding style is with the use of a code formatting
tool. Many interactive development environments provide such capabilities.)

Each rule in this Technical Specification is accompanied by code examples. Code examples are
informative only and serve to clarify the requirements outlined in the normative portion of the rule.
Examples impose no normative requirements.

Each rule in this Technical Specification that is based on undefined behavior defined in the C Standard
identifies the undefined behavior by a numeric code. The numeric codes for undefined behaviors can be
found in Annex B, Undefined Behavior.

Two distinct kinds of examples are provided:

— noncompliant examples demonstrating language constructs that have weaknesses with potentially
exploitable security implications; such examples are expected to elicit a diagnostic from a conforming
analyzer for the affected language construct; and

— compliant examples are expected not to elicit a diagnostic.

Examples are not intended to be complete programs. For brevity, they typically omit #include
directives of C Standard Library headers that would otherwise be necessary to provide declarations of
referenced symbols. Code examples may also declare symbols without providing their definitions if the
definitions are not essential for demonstrating a specific weakness.

Some rules in this Technical Specification have exceptions. Exceptions are part of the specification of
these rules and are normative.

2 Conformance

In this Technical Specification, “shall” is to be interpreted as a requirement on an analyzer; conversely,
“shall not” is to be interpreted as a prohibition.

Various types of programs (such as compilers or specialized analyzers) can be used to check if a program
contains any violations of the coding rules specified in this Technical Specification. In this Technical
Specification, all such checking programs are called analyzers. An analyzer can claim conformity with
this Technical Specification. Programs that do not yield any diagnostic when analyzed by a conforming
analyzer cannot claim conformity to this Technical Specification.

TECHNICAL SPECIFICATION ISO/IEC TS 17961:2013(E)

© ISO/IEC 2013 – All rights reserved 1

PD ISO/IEC TS 17961:2013 PD ISO/IEC TS 17961:2013

Information technology — Programming languages,
their environments and system software interfaces — C
secure coding rules

1 Scope

This Technical Specification specifies

— rules for secure coding in the C programming language and

— code examples.

This Technical Specification does not specify

— the mechanism by which these rules are enforced or

— any particular coding style to be enforced. (It has been impossible to develop a consensus on
appropriate style guidelines. Programmers should define style guidelines and apply these guidelines
consistently. The easiest way to consistently apply a coding style is with the use of a code formatting
tool. Many interactive development environments provide such capabilities.)

Each rule in this Technical Specification is accompanied by code examples. Code examples are
informative only and serve to clarify the requirements outlined in the normative portion of the rule.
Examples impose no normative requirements.

Each rule in this Technical Specification that is based on undefined behavior defined in the C Standard
identifies the undefined behavior by a numeric code. The numeric codes for undefined behaviors can be
found in Annex B, Undefined Behavior.

Two distinct kinds of examples are provided:

— noncompliant examples demonstrating language constructs that have weaknesses with potentially
exploitable security implications; such examples are expected to elicit a diagnostic from a conforming
analyzer for the affected language construct; and

— compliant examples are expected not to elicit a diagnostic.

Examples are not intended to be complete programs. For brevity, they typically omit #include
directives of C Standard Library headers that would otherwise be necessary to provide declarations of
referenced symbols. Code examples may also declare symbols without providing their definitions if the
definitions are not essential for demonstrating a specific weakness.

Some rules in this Technical Specification have exceptions. Exceptions are part of the specification of
these rules and are normative.

2 Conformance

In this Technical Specification, “shall” is to be interpreted as a requirement on an analyzer; conversely,
“shall not” is to be interpreted as a prohibition.

Various types of programs (such as compilers or specialized analyzers) can be used to check if a program
contains any violations of the coding rules specified in this Technical Specification. In this Technical
Specification, all such checking programs are called analyzers. An analyzer can claim conformity with
this Technical Specification. Programs that do not yield any diagnostic when analyzed by a conforming
analyzer cannot claim conformity to this Technical Specification.

TECHNICAL SPECIFICATION ISO/IEC TS 17961:2013(E)

© ISO/IEC 2013 – All rights reserved 1

