BSI Standards Publication ### Transmitting equipment for radiocommunication - Radio-over-fibre technologies for spectrum measurement - 100-GHz spectrum measurement equipment #### National foreword This Published Document is the UK implementation of IEC/TR 63100:2017. The UK participation in its preparation was entrusted to Technical Committee EPL/103, Transmitting equipment for radio communication. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2017 Published by BSI Standards Limited 2017 ISBN 978 0 580 96404 6 ICS 33.180.01; 33.060.20 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Standards Policy and Strategy Committee on 31 August 2017. Amendments/corrigenda issued since publication Date Text affected ## **IEC TR 63100** Edition 1.0 2017-07 # TECHNICAL REPORT Transmitting equipment for radiocommunication – Radio-over-fibre technologies for spectrum measurement – 100-GHz spectrum measurement equipment INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 33.060.20; 33.180.01 ISBN 978-2-8322-4554-5 Warning! Make sure that you obtained this publication from an authorized distributor. #### CONTENTS | F | OREWO | PRD | 4 | | | | |--|--|--|----|--|--|--| | 1 | Scop | pe | 6 | | | | | 2 | Norn | native references | 6 | | | | | 3 | Term | ns, definitions and abbreviated terms | 6 | | | | | | 3.1 | Terms and definitions | 6 | | | | | | 3.2 | Abbreviated terms | 6 | | | | | 4 | Background to measurement over 100 GHz | | | | | | | | 4.1 | General | 7 | | | | | | 4.2 | IEEE 802.11ad wireless devices | 7 | | | | | | 4.3 | Automotive radar | 7 | | | | | | 4.4 | Airport ground radar | 7 | | | | | | 4.5 | Mobile backhaul | 8 | | | | | | 4.6 | Uncompressed HD signal transmission | | | | | | 5 | Spec | strum measurement over 100 GHz | | | | | | | 5.1 | Overview | | | | | | | 5.2 | 100-GHz spectrum analyser system configuration | | | | | | | 5.3 | Key technologies | | | | | | | 5.3.1 | | | | | | | | 5.3.2 | | | | | | | | 5.3.3 | | | | | | | | 5.4 | Performance of 100-GHz spectrum analyser | | | | | | | 5.4.1 | | | | | | | | 5.4.2 | | | | | | | | 5.4.3
5.4.4 | • | | | | | | | 5.4.5 | 9 | | | | | | | 5.4.6 Third order intercept point | | | | | | | | 5.4.7 | · · | | | | | | 6 | | surement examples | | | | | | Ü | 6.1 | 120-GHz mm-wave link | | | | | | | 6.2 | FM CW radar signal observation | | | | | | | 6.3 | Summary of measurement examples | | | | | | Ri | | phy | | | | | | | 2 | ., | | | | | | Fi | aura 1. | - External appearance of a 100-GHz spectrum analyser | Q | | | | | | • | | | | | | | | | - 100-GHz spectrum analyser block diagram | | | | | | | _ | - Fabry-Perot tunable filter | | | | | | | _ | - Pre-selector frequency characteristics | | | | | | Fi | gure 5 | - S21 transmission characteristics | 11 | | | | | Fi | gure 6 | - RoF Sig Gen block diagram | 11 | | | | | Figure 7 – Comparison of harmonic component levels | | | | | | | | Fi | Figure 8 – Level calibration system12 | | | | | | | Fi | Figure 9 – Standard deviation of calibration13 | | | | | | | | Figure 10 – Calibration result13 | | | | | | | | _ | - Spectrum measurement | | | | | #### IEC TR 63100:2017 © IEC 2017 - 3 - | Figure 12 – Image response | 14 | |--|----| | Figure 13 – Image response comparison | 15 | | Figure 14 – Displayed average noise level | 16 | | Figure 15 – Third order intercept point | 16 | | Figure 16 – TOI measurement result | 17 | | Figure 17 – Residual spurious response | 18 | | Figure 18 – Measurement system block diagram | 18 | | Figure 19 – 120-GHz mm-wave link measurement results | 19 | | Figure 20 – Experimental system block diagram | 20 | | Figure 21 – Observed 5-GHz BW 5-µs chirp signal at 10-GHz span | 20 | | | | | Table 1 – Design specifications | 9 | | Table 2 – Measured image response | 15 | | Table 3 – SPA setting at residual response measurement | 17 | | Table 4 – 120-GHz mm-wave link specifications | 18 | | Table 5 – SPA setting at 120-GHz mm-wave link measurement | 19 | | Table 6 – SPA settings FM CW radar | 20 | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION _____ # TRANSMITTING EQUIPMENT FOR RADIOCOMMUNICATION – RADIO-OVER-FIBRE TECHNOLOGIES FOR SPECTRUM MEASUREMENT – 100-GHZ SPECTRUM MEASUREMENT EQUIPMENT #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art". IEC TR 63100, which is a Technical Report, has been prepared by IEC technical committee 103: Transmitting equipment for radiocommunication: IEC TR 63100:2017 © IEC 2017 - 5 - The text of this Technical Report is based on the following documents: | Enquiry draft | Report on voting | |---------------|------------------| | 103/157/DTR | 103/163/RVDTR | Full information on the voting for the approval of this Technical Report can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. A bilingual version of this publication may be issued at a later date. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. # TRANSMITTING EQUIPMENT FOR RADIOCOMMUNICATION – RADIO-OVER-FIBRE TECHNOLOGIES FOR SPECTRUM MEASUREMENT – 100-GHZ SPECTRUM MEASUREMENT EQUIPMENT #### 1 Scope This document describes 100-GHz spectrum measurement methods using RoF technologies. It covers the background to measurement over 100 GHz, the configuration of a spectrum analyser, the key technologies, such as mm-wave tunable filter, and RoF-technologies-based local oscillator, and provides some measured examples. #### 2 Normative references There are no normative references in this document. #### 3 Terms, definitions and abbreviated terms #### 3.1 Terms and definitions No terms and definitions are listed in this document. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.2 Abbreviated terms mm-wave millimeter-wave ADAS advanced driving assistant systems FOD foreign object and debris ODU outdoor unit IDU indoor unit HDTV high-definition television MPEG moving pictures experts group DUT device under test UTC-PD uni-travelling-carrier photodiode SD standard deviation LSB lower sideband USB upper sideband DANL displayed average noise level TOI third order intercept ACLR adjacent channel leakage power ratio SNR signal-to-noise ratio IR infra-red SPA spectrum analyser