PD IEC TR 63262:2019

BSI Standards Publication

Performance of unified power flow controller (UPFC) in electric power systems

National foreword

This Published Document is the UK implementation of IEC TR 63262:2019.

The UK participation in its preparation was entrusted to Technical Committee PEL/22, Power electronics.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2019 Published by BSI Standards Limited 2019

ISBN 978 0 539 03680 0

ICS 29.200; 29.240.99

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 September 2019.

Amendments/corrigenda issued since publication

Date Text affected

IEC TR 63262

Edition 1.0 2019-09

TECHNICAL REPORT

Performance of unified power flow controller (UPFC) in electric power systems

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.200; 29.240.99

ISBN 978-2-8322-7393-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	FOREWORD					
IN	INTRODUCTION					
1	Scope					
2	Normative references					
3	Terms, definitions and symbols9					
	3.1	Terms and definitions				
	3.2	Symbols				
4	Princ	iples and configurations				
	4.1	Basic principles				
	4.2	UPFC configurations				
	4.2.1	Basic structure	12			
	4.2.2	UPFC configuration in single transmission line	13			
	4.2.3	UPFC configuration in double transmission lines	13			
	4.2.4	UPFC configuration in multiple transmission lines	15			
5	Desig	gn rules	15			
	5.1	Proposal selection	15			
	5.2	Parameter selection and coordination	15			
6	Perfo	rmance requirements for key equipment				
	6.1	General	16			
	6.2	Voltage sourced converters (VSCs)	16			
	6.2.1	General	16			
	6.2.2					
	6.2.3					
	6.3	Series transformer				
	6.3.1	General				
	6.3.2	5				
	6.3.3					
	6.3.4					
	6.3.5		-			
	6.3.6	DC biasing Shunt transformer				
	6.4 6.4.1	General				
	6.4.1					
	6.4.3					
	6.4.4					
	6.4.5	5				
	6.5	Fast bypass switch (FBS)				
7	Conti	ol and protection				
	7.1	Control system of UPFC				
	7.1.1	Basic requirement				
	7.1.2					
	7.1.3	-				
	7.2	Protection system of UPFC				
	7.2.1	Basic requirements				
	7.2.2	Configuration requirements	24			
	7.2.3	Functions of protection system	24			

	7.3	Req	uirements on UPFC monitoring system	25				
	7.4	Req	uirements on communication interfaces	26				
8	Insul	ation	co-ordination	26				
	8.1	Prin	ciples of insulation co-ordination	26				
	8.1.1		General	26				
	8.1.2		Insulation co-ordination procedure	26				
	8.1.3		Arrester protective scheme	27				
	8.2	Volt	ages and overvoltages in service					
	8.2.1		Maximum operating voltage					
	8.2.2		Sources of overvoltages					
	8.3		ermination of the required withstand voltages (<i>U</i> rw)					
9	Syste	em po	erformance	30				
	9.1	Gen	eral	30				
	9.2	Stea	ady-state performance	30				
	9.2.1		General	30				
	9.2.2		Steady state control requirement of transmission line power	30				
	9.2.3		Steady state control requirement of reactive power compensation and voltage control	30				
	9.2.4		Overload capacity requirement	30				
	9.3	Dyn	amic performance	30				
	9.4	Fau	It ride-through performance	31				
10	Tests	S		31				
	10.1	Gen	eral	31				
	10.2	Off-	site tests of main components	31				
	10.2.	1	Converter valve	31				
	10.2.	2	Fast bypass switch (FBS)	32				
	10.2.	3	Transformers	32				
	10.3	Ons	ite commissioning test	33				
	10.3.	1	General	33				
	10.3.	2	Converter energizing test	33				
	10.3.	3	Energizing test of series transformer	34				
	10.3.	4	UPFC initial operational tests					
	10.3.	5	Steady-state performance test	34				
	10.3.	6	Dynamic performance test					
	10.3.	7	Protection trip test					
	10.3.		Additional control function test					
	10.3.		Overload test					
	10.3.		Fault ride-through test of AC system					
An	inex A (-	mative) Examples of typical UPFC projects					
	A.1		UPFC project structure of U.S.A.					
	A.2		gjin UPFC project structure of South Korea					
	A.3		cy UPFC project structure of U.S.A.					
	A.4		jing UPFC project structure of China					
	A.5		nghai UPFC project structure of China					
	A.6		hou UPFC project structure of China					
	A.7		er information for typical UPFC projects					
_	A.8 Technical and economic evaluation for UPFC projects							
An	Annex B (informative) The difference between UPFC and other FACTS							

- 4 -	IEC TR 63262:2019 © IEC 2019
Bibliography	40
Figure 1 – UPFC used in a two-terminal transmission system	۱11
Figure 2 –UPFC power flow schematic diagram	
Figure 3 – UPFC control functions	
Figure 4 – UPFC structure diagram	
Figure 5 – UPFC configuration in single transmission line VS	C13
Figure 6 – UPFC configuration with non-common DC bus	
Figure 7 – UPFC configuration with common DC bus	14
Figure 8 – Typical three-level converter topology	
Figure 9 – Typical MMC topology	
Figure 10 – Single-phase voltage waveform on the AC side	
Figure 11 – Typical structure of series transformer winding	
Figure 12 – Typical winding structure of the shunt transforme	er21
Figure 13 – Typical structure of TBS	
Figure 14 – UPFC protection function areas	25
Figure 15 – Example of arresters protecting areas for a MMC	C-UPFC29
Figure A.1 – Main electrical circuit of Inez UPFC project	35
Figure A.2– Main electrical circuit of Kangjin UPFC project [7	1]35
Figure A.3 – Main electrical circuit of Marcy UPFC project [1]36
Figure A.4– Main electrical circuit of Nanjing UPFC project [1]36
Figure A.5 – Main electrical circuit of Shanghai UPFC projec	t [1]37
Figure A.6 – Main electrical circuit of Suzhou UPFC project [1]37
Table 1 – Arrester protective scheme for an MMC-UPFC	27
Table 2 – Indicative values of ratios of required impulse with protective level	
Table 3 – Main test items of converter valve	
Table 4 – Main test items of TBS	
Table 5 – Main test items of transformers	
Table A.1 – Main parameters of typical UPFC projects [1]	
Table A.2 – Main parameters of transformers in Kangjin UPF	C project38
Table A.3 – Main parameters of transformers in Nanjing UPF	C project38
Table B.1 – Comparison of control parameters and application	on of each FACTS39

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PERFORMANCE OF UNIFIED POWER FLOW CONTROLLER (UPFC) IN ELECTRIC POWER SYSTEMS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a Technical Report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 63262, which is a Technical Report, has been prepared by subcommittee 22F: Power electronics for electrical transmission and distribution systems, of IEC technical committee 22: Power electronic systems and equipment.

The text of this Technical Report is based on the following documents:

Draft TR	Report on voting
22F/521/DTR	22F/531/RVDTR

Full information on the voting for the approval of this Technical Report can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

A unified power flow controller (UPFC) adjusts both the active and reactive power of a transmission line by regulating and controlling line impedance, bus voltage and phase angle difference. When addressing a lack of power control methods and the insufficient supporting capacity of dynamic conditions, a UPFC provides an effective solution. Before 2005, there were three UPFC projects around the world: Inez UPFC project installed in 1998 in U.S.A., Kangjin UPFC project installed in 2003 in South Korea, Marcy UPFC project installed in 2004 in U.S.A. (see Annex A).

Ten years later, with relevant technology upgrades and increasing electric power demand, three more UPFC projects have been constructed and placed into service, all in China. They are the Nanjing 220 kV UPFC project installed in 2015, Shanghai 220 kV UPFC project installed in 2017 and Suzhou 500 kV UPFC project also installed in 2017. All these projects are based on the modular multilevel converter (MMC) technology which has successfully mitigated the issue of uneven power flow distribution, improved power supply capacity and the reliability of power supply in related areas. It is believed that with the further growth of electric power demand, UPFC technology will be more extensively applied in the power marketplace.

This document is based on the practical experience of UPFC projects using modular multilevel converter (MMC) which is a most perfect type of a voltage sourced converter (VSC) that can provide technical references for UPFC design, manufacture, test, commissioning, operation and maintenance.

PERFORMANCE OF UNIFIED POWER FLOW CONTROLLER (UPFC) IN ELECTRIC POWER SYSTEMS

1 Scope

This document provides guidelines for applying unified power flow controllers (UPFC) in power systems. It includes letter symbols, terms and definitions, principles and configurations, design rules, performance requirements for key equipment, control and protection, insulation co-ordination, system performance and tests. This technical report applies to the UPFC based on modular multi-level converter (MMC) technology, as well as UPFC based on three-level converter technology.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60071-1, Insulation co-ordination – Part 1: Definitions, principles and rules

IEC 60071-5:2014, Insulation co-ordination – Part 5: Procedures for high-voltage direct current (HVDC) converter stations

IEC 60076-2, Power transformers – Part 2: Temperature rise for liquid-immersed transformers

IEC 60076-3, Power transformers – Part 3: Insulation levels, dielectric tests and external clearances in air

IEC 60076-4, Power transformers – Part 4: Guide to the lightning impulse and switching impulse testing – Power transformers and reactors

IEC 60700-1, Thyristor valves for high voltage direct current (HVDC) power transmission – Part 1: Electrical testing

IEC 61954, Static var compensators (SVC) – Testing of thyristor valves

IEC 62501, Voltage sourced converter (VSC) valves for high-voltage direct current (HVDC) power transmission – Electrical testing

IEC TR 62543, High-voltage direct current (HVDC) power transmission using voltage sourced converters (VSC)

IEC 62751-2, Power losses in voltage sourced converter (VSC) valves for high-voltage direct current (HVDC) systems – Part 2: Modular multilevel converters

IEC 62823, Thyristor valves for thyristor controlled series capacitors (TCSC) – Electrical testing