

BSI Standards Publication

Field device tool (FDT) interface specification

Part 51-150: Communication implementation for common object model - IEC 61784 CPF 15

National foreword

This Published Document is the UK implementation of CLC IEC/TR 62453-51-150:2019. It is identical to IEC TR 62453-51-150:2017. It supersedes PD CLC/TR 62453-515:2009, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee GEL/65/3, Industrial communications: process measurement and control, including fieldbus.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2019 Published by BSI Standards Limited 2019

ISBN 978 0 539 00733 6

ICS 35.100.05; 25.040.40; 35.110

Compliance with a British Standard cannot confer immunity from legal obligations.

This Published Document was published under the authority of the Standards Policy and Strategy Committee on 28 February 2019.

Amendments/corrigenda issued since publication

Date Text affected

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

CLC IEC/TR 62453-51-150

February 2019

ICS 25.040.40; 35.100.05; 35.110

English Version

Field device tool (FDT) interface specification - Part 51-150: Communication implementation for common object model - IEC 61784 CPF 15 (IEC/TR 62453-51-150:2017)

Spécification des interfaces des outils des dispositifs de terrain (FDT) - Partie 51-150: Mise en œuvre d'un profil de communication pour le modèle d'objet commun – CPF 15 de l'IEC 61784 (IEC/TR 62453-51-150:2017)

Field Device Tool (FDT)-Schnittstellenspezifikation - Teil 51-150: Kommunikationsimplementierung mit dem allgemeinen Objektmodell (COM) - Kommunikationsprofilfamilie (CPF) 15 nach IEC 61784 (IEC/TR 62453-51-150:2017)

This Technical Report was approved by CENELEC on 2019-01-14.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

CLC IEC/TR 62453-51-150:2019 (E)

European foreword

This document (CLC IEC/TR 62453-51-150:2019) consists of the text of IEC/TR 62453-51-150:2017 prepared by SC 65E "Devices and integration in enterprise systems" of IEC/TC 65 "Industrial-process measurement, control and automation".

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC/TR 62453-51-150:2017 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

IEC 61158-5-15

NOTE

Harmonized as EN 61158-5-15

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
IEC 61131-3	-	Programmable controllers - Part 3: Programming languages	EN 61131-3	-
IEC 61784-1	2014	Industrial communication networks - Profiles - Part 1: Fieldbus profiles	EN 61784-1	2014
IEC 61784-2	-	Industrial communication networks - Profiles - Part 2: Additional fieldbus profiles for real-time networks based on ISO/IEC 8802-3	EN 61784-2	-
IEC 62453-1	2016	Field device tool (FDT) interface specification - Part 1: Overview and guidance	EN 62453-1	2017
IEC 62453-2	2016	Field device tool (FDT) interface specification - Part 2: Concepts and detailed description	EN 62453-2	2017
IEC TR 62453-41	2016	Field device tool (FDT) interface specification - Part 41: Object model integration profile - Common object model	_	-
IEC 62453-315	2009	Field device tool (FDT) Interface specification - Part 315: Communication profile integration - IEC 61784 CPF 15	EN 62453-315	2009

- 2 - IEC TR 62453-51-150:2017 © IEC 2017

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
Normative references	
3 Terms, definitions, symbols, abbreviated terms and conventions	7
3.1 Terms and definitions	
3.2 Symbols and abbreviated terms	
3.3 Conventions	
3.3.1 Data type names and references to data types	7
3.3.2 Vocabulary for requirements	7
4 Bus category	7
5 Access to instance and device data	7
6 Protocol specific usage of general data types	8
7 Protocol specific common data types	8
8 Network management data types	8
8.1 General	
8.2 Modbus device address – FDTModbusAddressSchema	8
9 Communication data types – FDTModbusCommunicationSchema	9
10 Channel parameter data types – FDTModbusChannelParameterSchema	16
11 Device identification	18
11.1 Device type identification data types – FDTModbusIdentSchema	18
11.2 Topology scan data types – DTMModbusDeviceSchema	
11.3 Scan identification data types – FDTModbusScanIdentSchema	20
11.4 Device type identification data types – FDTModbusDeviceTypeIdentSchema	22
11.5 XSLT Transformation	23
Bibliography	28
	_
Figure 1 – Part 51-150 of the IEC 62453 series	5
Table 1 – Protocol specific usage of general data types	8

IEC TR 62453-51-150:2017 © IEC 2017 - 3 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION -

Part 51-150: Communication implementation for common object model – IEC 61784 CPF 15

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 62453-51-150, which is a technical report, has been prepared by subcommittee 65E: Devices and integration in enterprise systems, of IEC technical committee 65: Industrial-process management, control and automation.

This document cancels and replaces IEC TR 62453-515 published in 2009. This edition constitutes a technical revision. The main changes consist in updates of the XML schemas.

Each part of the IEC 62453-51-xy series is intended to be read in conjunction with its corresponding part in the IEC 62453-3xy series. This document corresponds to IEC 62453-315.

- 4 - IEC TR 62453-51-150:2017 © IEC 2017

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
65E/440/DTR	65E/514/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The list of all parts of the IEC 62453 series, under the general title *Field device tool (FDT) interface specification*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- · reconfirmed,
- · withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC TR 62453-51-150:2017 © IEC 2017 - 5 -

INTRODUCTION

This part of IEC 62453 is an interface specification for developers of Field Device Tool (FDT) components for function control and data access within a client/server architecture. The specification is a result of an analysis and design process to develop standard interfaces to facilitate the development of servers and clients by multiple vendors that need to interoperate seamlessly.

With the integration of fieldbuses into control systems, there are a few other tasks which need to be performed. In addition to fieldbus- and device-specific tools, there is a need to integrate these tools into higher-level system-wide planning or engineering tools. In particular, for use in extensive and heterogeneous control systems, typically in the area of the process industry, the unambiguous definition of engineering interfaces that are easy to use for all those involved is of great importance.

A device-specific software component, called Device Type Manager (DTM), is supplied by the field device manufacturer with its device. The DTM is integrated into engineering tools via the FDT interfaces defined in this specification. The approach to integration is in general open for all kind of fieldbuses and thus meets the requirements for integrating different kinds of devices into heterogeneous control systems.

Figure 1 shows how this part of IEC 62453-51-xy series is aligned in the structure of the IEC 62453 series.

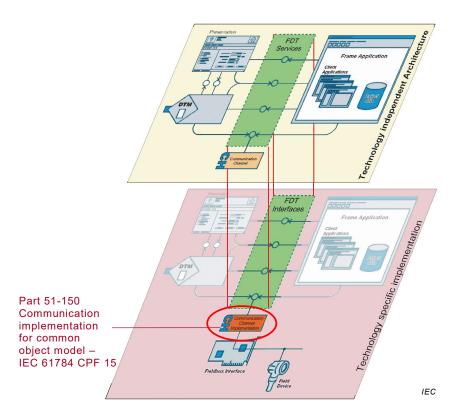


Figure 1 - Part 51-150 of the IEC 62453 series

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION -

Part 51-150: Communication implementation for common object model – IEC 61784 CPF 15

1 Scope

This part of the IEC 62453-51-xy series, which is a Technical Report, provides information for integrating IEC 61784-2 CPF 15 (Modbus TCP®) and Modbus Serial Line®¹ protocol support into FDT systems based on COM implementation. This part is to be used in conjunction with IEC TR 62453-41.

NOTE This part of IEC 62453 only specifies the mapping of Modbus parameters to FDT data types. For restrictions of protocol specific parameters concerning allowed values and concerning limitations of arrays used in the definition of FDT data types, refer to IEC 61158-5-15 and the MODBUS Application Protocol Specification.

This part of IEC 62453 specifies the implementation of communication and other services based on IEC 62453-315.

This document neither contains the FDT specification nor modifies it.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61131-3, Programmable controllers – Part 3: Programming languages

IEC 61784-1:2014, Industrial communication networks – Profiles – Part 1: Fieldbus profiles

IEC 61784-2, Industrial communication networks – Profiles – Part 2: Additional fieldbus profiles for real-time networks based on ISO/IEC 8802-3

IEC 62453-1:2016, Field device tool (FDT) interface specification – Part 1: Overview and guidance

IEC 62453-2:2016, Field device tool (FDT) interface specification – Part 2: Concepts and detailed description

IEC TR 62453-41:2016, Field device tool (FDT) interface specification – Part 41: Object model integration profile – Common object model

IEC 62453-315:2009, Field device tool (FDT) interface specification – Part 315: Communication profile integration – IEC 61784 CPF 15 IEC 62453-315:2009/AMD1:2016

Modbus is the trademark of Schneider Automation Inc. It is registered in the United States of America. This information is given for the convenience of users of this document and does not constitute an endorsement by IEC of the trademark holder or any of its products. Compliance to this profile does not require use of the trademark Modbus. Use of the trademark Modbus requires permission from Schneider Automation Inc.