BS 8081:2015+A2:2018

BSI Standards Publication

Code of practice for grouted anchors

BS 8081:2015+A2:2018 BRITISH STANDARD

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© The British Standards Institution 2018

Published by BSI Standards Limited 2018

ISBN 978 0 539 00367 3

ICS 91.200, 93.020

The following BSI references relate to the work on this document:

Committee reference B/526

Drafts for comment 15/30302283 DC; 17/30359711 DC; 18/30375081 DC

Amendments/corrigenda issued since publication

Date	Text affected
30 September 2017	A1: see Foreword
30 November 2017	C1: 11.3 subclause heading corrected
30 September 2018	A2: see Foreword

Contents		Page
	Foreword	iii
1	Scope	1
2	Normative references	2
3	Terms, definitions, symbols and abbreviations	3
	Figure 1 — Grouted anchors	9
4	General rules	13
	Table 1 — Recommended design and construction duties	14
5	Limit states	19
6	Design situations	20
7	Design considerations	20
	Figure 2 — Grouted anchors	22
	Figure 3 — Flow chart for the development of strategy for the monitoring and maintenance of	
	grouted anchors	24
8	Ultimate limit state design	24
9	Serviceability limit state design	24
10	Structural design	24
11	Anchor design	25
	Table 2 — Minimum resistance factors recommended for the calculation of the size of individual	
	fixed anchor lengths prior to testing	27
12	Materials	30
	Figure 4 — Typical encapsulation centralizers	33
	Figure 5 — Typical bar centralizer	34
	Figure 6 — Typical cross-section of centralizer/spacer unit for multi-strand tendon in temporary	
	unprotected systems	35
13	Durability	36
	Figure 7 — Typical coupler details in tendon free length of bar tendon	40
	Figure 8 — Typical double corrosion protection of tendon bond length of strand tendon using a	
	single corrugated sheath and polyester resin	42
	Figure 9 — Typical double corrosion protection of tendon bond length of strand tendon using a	
	double corrugated sheath and cement grout	43
	Figure 10 — Tendon bond length protection for a ribbed bar tendon	44
	Figure 11 — Typical double corrosion protection of tendon bond length of smooth or ribbed bar	
	tendon using a double corrugated duct	45
	Figure 12 — Typical double corrosion protection of restressable anchor head incorporating a	
	strand tendon	46
14	Execution	48
15	Considerations related to testing	58
16	Maintenance	58
17	Reporting	60
Annex A	(informative) Indicative record sheets	62
	Table A.1 — Typical drilling, grouting and tendon installation record sheet	63
	Table A.2 — Typical stressing record sheet	65
	Table A.3 — Typical stressing results and analysis record sheet	67
Annex B	(informative) Determination of the size of grouted anchors	67
	Figure B.1 — Main types of cement injection grouted anchors	69
	Figure B.2 — Detail of tube à manchette for pressure grouting control	70
	Table B.1 — Rock/grout bond values that have been employed in practice	72

BS 8081:2015+A2:2018 **BRITISH STANDARD**

	Table B.2 — Rock/grout bond values that have been recommended for design	75
	Table B.3 — Rock/grout bond values from rock anchor tests	77
	Figure B.3 — Relationship between resistance efficiency factor and fixed anchor length	78
	Table B.4 — Approximate relationship between bearing capacity factor $N_{_{ m q}}$ and slenderness ratio	79
	Figure B.4 — Relationship between bearing capacity factor N_q and angle of shearing resistance in	
	terms of effective stress	80
	Figure B.5 — Ultimate load-holding capacity of anchors in sandy gravels and gravelly sands,	
	showing influence of soil type, density and fixed anchor length for Type C anchors	82
	Figure B.6 — Relationship between ultimate load-holding capacity, fixed anchor length and	
	dynamic penetration for two types of coarse soil	83
	Figure B.7 — Skin friction in fine soils for various fixed anchor lengths, with and without	
	post-grouting	85
	Figure B.8 — Influence of post-grouting pressure on skin friction in a fine soil	87
	Table B.5 — Fixed anchor lengths for cement-grouted rock anchors that have been employed or	
	recommended in practice	91
	Figure B.9 — Load transfer mechanisms for typical encapsulation systems	94
Annex C	(informative) Pre-grouting and post-grouting	96
Annex D	(informative) Tendon Young's Modulus values	98
Annex E	(informative) Corrosion	99
	Table E.1 — Soil corrosiveness related to values of soil resistivity and redox potential	102
Annex F	(informative) Corrosion protection	103
	Table F.1 — Proposed classes of protection for ground anchors	104
Annex G (no	ot used)	106
Annex H	(informative) General considerations on monitoring and testing	106
	Table H.1 — Relationship between the acceptance criteria for load-time and displacement-time	
	behaviour	109
Annex I	(informative) Health and safety	110
	Bibliography	111

Summary of pages

This document comprises a front cover, and inside front cover, pages i to iv, pages 1 to 116, an inside back cover and a back cover.

BRITISH STANDARD BS 8081:2015+A2:2018

Foreword

Publishing information

This British Standard is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 31 August 2015. It was prepared under the authority of Technical Committee B/526, *Geotechnics*. A list of organizations represented on this committee can be obtained on request to its secretary.

Supersession

BS 8081:2015+A2:2018 supersedes BS 8081:2015+A1:2017, which is withdrawn.

BS 8081:2015+A1:2017 superseded BS 8081:2015, which was withdrawn.

Information about this document

Text introduced or altered by Amendment No. 1 is indicated in the text by the tags [A] All. Minor editorial changes are not tagged. Amendment No. 1 introduces the following changes:

- <u>Table 2</u> has been updated;
- a new <u>Clause 11.3</u> has been inserted and the following subclauses renumbered; and
- Clause 11.3.5 has been deleted.

Text introduced or altered by Corrigendum No. 1 is indicated in the text by the tags C_1 C_1 .

Text introduced or altered by Amendment No. 2 is indicated by the tags (A2). Minor editorial changes are not tagged. Amendment No. 2 introduced the following changes:

- Annex G and associated citations in the text have been deleted; and
- References to BS EN ISO 22477-5 have been introduced.

Relationship with other publications

BS 8081 gives non-contradictory, complementary information for use with BS EN 1997-1:2004+A1:2013 and its UK National Annexes, BS EN 1537:2013 and BS EN ISO 22477-5.

Use of this document

As a code of practice, this British Standard takes the form of guidance and recommendations. It should not be quoted as if it were a specification and particular care should be taken to ensure that claims of compliance are not misleading.

Any user claiming compliance with this British Standard is expected to be able to justify any course of action that deviates from its recommendations.

Presentational conventions

The provisions of this standard are presented in roman (i.e. upright) type. Its recommendations are expressed in sentences in which the principal auxiliary verb is "should".

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Where words have alternative spellings, the preferred spelling of the Shorter Oxford English Dictionary is used (e.g. "organization" rather than "organisation").

BS 8081:2015+A2:2018 **BRITISH STANDARD**

> The auxiliary verb "may" is used in the text to express permissibility, e.g. as an alternative to the primary recommendation of the Clause. The auxiliary verb "can" is used to express possibility, e.g. a consequence of an action or an event.

Notes and commentaries are provided throughout the text of this standard. Notes give references and additional information that are important but do not form part of the recommendations. Commentaries give background information.

Contractual and legal considerations

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

BRITISH STANDARD BS 8081:2015+A2:2018

1 Scope

1.1 This British Standard, as a code of practice, gives recommendations for the design, construction, stressing, testing, monitoring and maintenance of grouted anchors as defined in BS EN 1997-1:2004+A1:2013, BS EN 1537:2013 and BS EN ISO 22477-5.

- **1.2** Further general recommendations for corrosion hazards and protective measures, construction techniques and quality controls, stressing procedures, and the testing of grouted anchor components and complete installations are provided. Information supporting the practical implementation of these recommendations are provided in annexes to this code of practice.
- **1.3** Annex A provides examples of records that are developed during the execution and testing of grouted anchors..
- **1.4** Annex B provides information on the design of a fixed anchor length with respect to the bond or shear resistance at:
 - a) the ground/grout interface;
 - b) the grout/encapsulation interface;
 - c) the grout/tendon interface.
- **1.5** Annex C provides information on the pre-grouting and post-grouting of ground, where necessary.
- **1.6** Annex D provides information on the use of appropriate Young's modulus for the steel used in the design of the anchor tendon.
- **1.7** Annex E provides information on the types of corrosion that affect the steel elements of an anchor and the influence on the corrosion of the tendon of the ground and groundwater in which the anchor is installed.
- **1.8** Annex F provides information on the types of corrosion protection available for use in the fabrication and installation of the anchor.
- 1.9 Annex G $\stackrel{\triangle}{=}$ (not used) $\stackrel{\triangle}{=}$
- **1.10** Annex H provides information on monitoring anchors in the long term, including appropriate acceptance criteria and remedial measures that can be applied in the event of non-compliance with the acceptance criteria.
- **1.11** Annex I draws attention to the statutory regulations affecting the safety, welfare and health of persons in the execution of anchor construction.
- **1.12** This code of practice is for the use of clients who commission the use of grouted anchors, ground engineering contractors, and geotechnical and structural designers.
 - A_2 Text deleted A_2